Effects of Interactions between ZnO Nanoparticles and Saccharides on Biological Responses

نویسندگان

  • Mi-Ran Go
  • Jin Yu
  • Song-Hwa Bae
  • Hyeon-Jin Kim
  • Soo-Jin Choi
چکیده

Zinc oxide (ZnO) nanoparticles (NPs) are widely used as a Zn supplement, because Zn plays a role in many cellular and immune functions but public concern about their potentially undesirable effects on the human body is growing. When NPs are added in food matrices, interactions between NPs and food components occur, which can affect biological systems. In this study, interactions between ZnO NPs and saccharides were investigated by measuring changes in hydrodynamic radius, zeta potential and solubility and by quantifying amounts of adsorbed saccharides on NPs; acacia honey, sugar mixtures (containing equivalent amounts of fructose, glucose, sucrose and maltose) and monosaccharide solutions were used as model compounds. Biological responses of NPs dispersed in different saccharides were also evaluated in human intestinal cells and rats in terms of cytotoxicity, cellular uptake, intestinal transport and oral absorption. The results demonstrate that the hydrodynamic radii and zeta potentials of NPs were highly affected by saccharides. In addition, trace nutrients influenced NP/saccharide interactions and interactive effects between saccharides on the interactions were found. NPs in all saccharides increased inhibition of cell proliferation and enhanced cellular uptake. Oral absorption of NPs was highly enhanced by 5% glucose, which is in-line with intestinal transport result. These findings show that ZnO NPs interact with saccharides and these interactions affects biological responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The protein-nanoparticle interaction (protein corona) and its importance on the therapeutic application of nanoparticles

Nanobiotechnology has provided promising novel diagnostic and therapeutic strategies which capable to create a broad spectrum of nano-based imaging agents and medicines for human administrations. Several studies have demonstrated that the surface of nanomaterials is immediately coated with suspended proteins after contact with plasma or other biological fluids to form protein corona-nanoparticl...

متن کامل

Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells

ZnO NPs (zinc oxide nanoparticles) has generated significant scientific interest as a novel antibacterial and anticancer agent. Since oxidative stress is a critical determinant of ZnO NPs-induced damage, it is necessary to characterize their underlying mode of action. Different structural and physicochemical properties of ZnO NPs such as particle surface, size, shape, crystal structure, chemica...

متن کامل

Green synthesis of zinc oxide nanoparticles by Zataria multiflora extract and evaluation of its antimicrobial, cytotoxic and apoptotic effects on HT-29 cell line

Introduction: Metal oxide nanoparticles have long been challenged as a candidate for cancer treatment. In the present study, for the first time, biosynthesis of zinc oxide nanoparticles was performed by Zataria multiflora extract and then their antimicrobial, cytotoxic and apoptotic effects on colon cancer cell lines were investigated. Materials and Methods: The zinc oxide (ZnO) nanoparticles w...

متن کامل

Characterization and Evaluation of Antimicrobial Effects of ZnO/Ag Nanoparticles Synthesized by Milk Thistle Seed Extract (Silybum marianum): A Short Report

  Background and Objectives: The use of nanotechnology is rapidly expanding in various fields, especially in the health and pharmaceutical fields. The purpose of this study was to produce biological Zinc Oxide (ZnO) and silver (Ag) nanoparticles (NPs) using extract of milk thistle seeds and to determine their antibacterial properties. Materials and Methods: In this laboratory study, biologica...

متن کامل

ZnO nanoparticles modulate the ionic transport and voltage regulation of lysenin nanochannels

BACKGROUND The insufficient understanding of unintended biological impacts from nanomaterials (NMs) represents a serious impediment to their use for scientific, technological, and medical applications. While previous studies have focused on understanding nanotoxicity effects mostly resulting from cellular internalization, recent work indicates that NMs may interfere with transmembrane transport...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2018